1. Consider the following series and determine if they converge or diverge. In case of an alternating series specify if the convergence is absolute or conditional.
(a) $\sum_{n=1}^{\infty} \frac{2^{n}(n!)}{n^{n}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln (n)}{n^{2}}$
(c) $\sum_{n=1}^{\infty}(-1)^{n} \tan \left(\frac{1}{n}\right)$
(d) $\sum_{n=1}^{\infty} \frac{\sqrt[n]{n}}{n^{2}}$
(e) $\sum_{n=1}^{\infty} \frac{\sqrt{n}\left(n^{2}+n+1\right)}{n^{3}+1}$
(f) $\sum_{n=1}^{\infty} \frac{n \ln n}{2^{n}}$
(g) $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n(\ln n)^{2}}$
2. Give examples of two series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ that both converge but such that the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ diverges.
3. For what values of x does the power series $\sum \frac{(4 x-5)^{n}}{n^{3 / 2}}$ converge? Explain
4. (a) Find the McLaurin series for $f(x)=\ln (1+x)$ and determine for what values of x the series converges.
(b) Deduce $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}$
(c) Using the Mclaurin polynomial of degree 4, find an approximation for $\ln (2)$
5. Find the Taylor series for $f(x)=x^{3}-2 x^{2}+x+1$ with $a=1$
6. (a) Using the series for e^{x}, find the series for $e^{x^{2}}$.
(b) Using the result in part a,express the integral $\int e^{x^{2}} d x$ as an infinite series.
